
Robust Optimal Power Flow with Uncertain
Renewables

Sean Harnett, Dan Bienstock, Misha Chertkov

6-26-2012

Sean Harnett, Dan Bienstock, Misha Chertkov Robust Optimal Power Flow with Uncertain Renewables



Sean Harnett, Dan Bienstock, Misha Chertkov Robust Optimal Power Flow with Uncertain Renewables



Optimal power flow
aka economic dispatch, tertiary control

Choose generator outputs

Minimize cost

Meet loads, satisfy generator and network constraints

Assume everything fixed
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Motivation

Bonneville Power Administration data, northwest US

proportional control

with standard solution, 7 lines exceed limit ≥ 8% of the time
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Goals

simple control

aware of limits

not too conservative

computationally practicable
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Set up
control

two parameters p and α per generator, affine control of form

pi = pi − αi

∑
j

∆ωj

∑
i

αi = 1

∼ primary + secondary control
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Set up
control
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Set up
line trip model

Anghel, Werley, Motter (2007): model of thermal dynamics of a power
line

heat equation: ∂T (x,t)
∂t = κ∂

2T (x,t)
∂x2 + αI 2 − ν(T (x , t)− T0)

solution: T(t) = e−νt(T(0) − Te(P)) + Te(P), where

Te(P) = lim
t→∞

T (t) =
αI 2

ν
+ T0 =

α

ν

P2

V 2
+ T0,

P = power flow, T0 = ambient temperature

if P > Pmax, line fails when its temperature reaches Te(Pmax):

t∗ =
1

ν
ln

Te(P)− T (0)

Te(P)− Te(Pmax)
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Set up
line trip model

But...

In 2003 event, many critical lines tripped due to thermal reasons,
but well short of their line limit

Thermal limit may be in terms of terminal equipment, not line itself

Wind strength and wind direction is important

Resistivity is a function of line temperature

In medium-length lines (∼ 100 miles) the line limit is due to voltage
drop, not thermal reasons

In long lines, it is due to phase angle change (stability), not thermal
reasons
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Set up
line trip model

summary: exceeding limit for too long is bad, but complicated

want: ”fraction time a line exceeds its limit is small”

proxy: prob(violation on line i) < ε for each line i
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Set up
wind model

Need to model variation in wind power between dispatches

Wind at bus i of the form µi + wi
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Computing line flows

wind power at bus i : µi + wi

DC approximation

Bθ = p − d +(µ+ w − α
∑

i∈G wi )

θ = B+(p̄ − d + µ) + B+(I − αeT )w

flow is a linear combination of bus power injections:

f ij = yij(θi − θj)
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Computing line flows

f ij = yij

(
(B+

i − B+
j )T (p̄ − d + µ) + (Ai − Aj)

T w
)
,

A = B+(I − αeT )

Given distribution of wind can calculate moments of line flows:

f̄ij = yij(B
+
i − B+

j )T (p̄ − d + µ)

var(f ij) := s2
ij ≥ y2

ij

∑
k(Aik − Ajk)2σ2

k (assuming ind.)

and higher moments if necessary
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Chance constraints to deterministic constraints

recall chance constraints: P(|f ij| > f max
ij ) < εij

from moments of f ij, can get conservative approximations
using e.g. Chebyshev’s inequality

for Gaussian wind, can do better, since f ij is Gaussian :

f max
ij ± f̄ij ≥ sijφ

−1(1−
εij
2

)
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Formulation

Choose generator outputs and response parameters to minimize
the expected cost, and so that the chance (fraction of the time)
that each line overflows is small.

min
p,α
{E[c(p)] :Bδ = α, δn = 0

s2
ij ≥ y2

ij

∑
k∈W

σ2
k(B+

ik − B+
jk − δi + δj)

2

Bθ = p + µ− d , θn = 0

f ij = yij(θi − θj)

f max
ij ± f ij ≥ sijφ

−1(1− εij
2

)∑
i∈G

pi +
∑
i∈W

µi =
∑
i∈D

di∑
i∈G

αi = 1, α ≥ 0}
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Toy example

1 What if no line limits?
2 What if tight limit on line connecting generators?
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Answer 1

What if no line limits?
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Answer 2

What if small limit on line connecting generators?
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Experiment: NYTimes

How much more wind power can the CC-OPF method use?
And how much money does this save?

39-bus New England system from MATPOWER

30% penetration, CC-OPF cost 264,000
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Experiment: NYTimes

’standard’ solution with 10% buffer
feasible only up to 5% penetration (right)

Cost 1,275,000 – almost 5(!) times greater than CC-OPF
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Big cases

Polish system - winter 2003-04 evening peak
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Big cases

Polish 2003-2004 winter peak case

2746 buses, 3514 branches, 8 wind sources

5% penetration and σ = .3µ each source

According to CPLEX, the optimization problem has

36625 variables

38507 constraints, 6242 conic constraints

128538 nonzeros, 87 dense columns
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Big cases

CPLEX:

total time on 16 threads = 3393 seconds

”optimization status 6”

given solution is wildly infeasible

Gurobi:

time: 31.1 seconds

”Numerical trouble encountered”
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Cutting-plane method
overview

Cutting-plane algorithm:

remove all conic constraints
repeat until convergence:

solve linearly constrained problem
if no conic constraints violated: return
find separating hyperplane for maximum violation
add linear constraint to problem
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Cutting-plane method

Candidate solution violates conic constraint

-3 -2 -1 1 2 3
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Cutting-plane method

Separate: find a linear constraint also violated
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Cutting-plane method

Solve again with linear constraint
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Cutting-plane method

New solution still violates conic constraint
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Cutting-plane method

We might end up with many linear constraints
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Cutting-plane method

... which approximate the conic constraint
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conic constraint: √
x2
1 + x2

2 + ...+ x2
k = ‖x‖2 ≤ y

candidate solution:
(x∗, y∗)

cutting-plane (linear constraint):

‖x∗‖2 +
x∗T

‖x∗‖2
(x − x∗) =

x∗T x

‖x∗‖2
≤ y
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Polish 2003-2004 case
CPLEX: “opt status 6”
Gurobi: “numerical trouble”

Example run of cutting-plane algorithm:

Iteration Max rel. error Objective

1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

Total running time: 32.9 seconds
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Back to motivating example

BPA case

standard OPF: cost 235603, 7 lines exceed ≥8% of the time

CC-OPF: cost 237297, all lines exceed ≤2% of the time

run time 9.5 seconds, only one cutting plane
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Conclusion

Our chance-constrained optimal power flow:

safely accounts for variability in wind power between dispatches

uses a simple control which is easily integrable into existing system

is fast enough to be useful at the appropriate time scale
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